Edge Unfoldings of Platonic Solids Never Overlap

نویسندگان

  • Takashi Horiyama
  • Wataru Shoji
چکیده

Is every edge unfolding of every Platonic solid overlapfree? The answer is yes. In other words, if we develop a Platonic solid by cutting along its edges, we always obtain a flat nonoverlapping simple polygon. We also give self-overlapping general unfoldings of Platonic solids other than the tetrahedron (i.e., a cube, an octahedron, a dodecahedron, and an icosahedron), and edge unfoldings of some Archimedean solids: a truncated icosahedron, a truncated dodecahedron, a rhombicosidodecahedron, and a truncated icosidodecahedron.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Spiral Unfoldings of Convex Polyhedra

The notion of a spiral unfolding of a convex polyhedron, resulting by flattening a special type of Hamiltonian cut-path, is explored. The Platonic and Archimedian solids all have nonoverlapping spiral unfoldings, although among generic polyhedra, overlap is more the rule than the exception. The structure of spiral unfoldings is investigated, primarily by analyzing one particular class, the poly...

متن کامل

Zipper unfoldings of polyhedral complexes

We explore which polyhedra and polyhedral complexes can be formed by folding up a planar polygonal region and fastening it with one zipper. We call the reverse process a zipper unfolding. A zipper unfolding of a polyhedron is a path cut that unfolds the polyhedron to a planar polygon; in the case of edge cuts, these are Hamiltonian unfoldings as introduced by Shephard in 1975. We show that all ...

متن کامل

Flat Zipper-Unfolding Pairs for Platonic Solids

We show that four of the five Platonic solids’ surfaces may be cut open with a Hamiltonian path along edges and unfolded to a polygonal net each of which can “zipper-refold” to a flat doubly covered parallelogram, forming a rather compact representation of the surface. Thus these regular polyhedra have particular flat “zipper pairs.” No such zipper pair exists for a dodecahedron, whose Hamilton...

متن کامل

A Class of Convex Polyhedra with Few Edge Unfoldings

We construct a sequence of convex polyhedra on n vertices with the property that, as n→∞, the fraction of its edge unfoldings that avoid overlap approaches 0, and so the fraction that overlap approaches 1. Nevertheless, each does have (several) nonoverlapping edge unfoldings.

متن کامل

Constructing Finite Frames via Platonic Solids

Finite tight frames have many applications and some interesting physical interpretations. One of the important subjects in this area is the ways for constructing such frames. In this article we give a concrete method for constructing finite normalized frames using Platonic solids.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011